A Data- and Workload-Aware Query Answering Algorithm for Range Queries Under Differential Privacy
نویسندگان
چکیده
We describe a new algorithm for answering a given set of range queries under -differential privacy which often achieves substantially lower error than competing methods. Our algorithm satisfies differential privacy by adding noise that is adapted to the input data and to the given query set. We first privately learn a partitioning of the domain into buckets that suit the input data well. Then we privately estimate counts for each bucket, doing so in a manner well-suited for the given query set. Since the performance of the algorithm depends on the input database, we evaluate it on a wide range of real datasets, showing that we can achieve the benefits of data-dependence on both “easy” and “hard” databases.
منابع مشابه
A Data- and Workload-Aware Algorithm for Range Queries Under Differential Privacy
We describe a new algorithm for answering a given set of range queries under -differential privacy which often achieves substantially lower error than competing methods. Our algorithm satisfies differential privacy by adding noise that is adapted to the input data and to the given query set. We first privately learn a partitioning of the domain into buckets that suit the input data well. Then w...
متن کاملDesign of Policy-Aware Differentially Private Algorithms
Recent work has proposed a privacy framework, calledBlowfish, that generalizes differential privacy in order togenerate principled relaxations. Blowfish privacy defini-tions take as input an additional parameter called a policygraph, which specifies which properties about individualsshould be hidden from an adversary. An open question isto characterize when Blowfish priv...
متن کاملEfficient Batch Query Answering Under Differential Privacy
Differential privacy is a rigorous privacy condition achieved by randomizing query answers. This paper develops efficient algorithms for answering multiple queries under differential privacy with low error. We pursue this goal by advancing a recent approach called the matrix mechanism, which generalizes standard differentially private mechanisms. This new mechanism works by first answering a di...
متن کاملAn Adaptive Mechanism for Accurate Query Answering under Differential Privacy
We propose a novel mechanism for answering sets of counting queries under differential privacy. Given a workload of counting queries, the mechanism automatically selects a different set of “strategy” queries to answer privately, using those answers to derive answers to the workload. The main algorithm proposed in this paper approximates the optimal strategy for any workload of linear counting q...
متن کاملOptimizing Histogram Queries under Differential Privacy
Differential privacy is a robust privacy standard that hasbeen successfully applied to a range of data analysis tasks.But despite much recent work, optimal strategies for answer-ing a collection of related queries are not known.We propose the matrix mechanism, a new algorithm foranswering a workload of predicate counting queries. Givena workload, the mechanism requests a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- PVLDB
دوره 7 شماره
صفحات -
تاریخ انتشار 2014